GOVERNMENT DEGREE COLLEGE, NANDIKOTKUR

DEPARTMENT OF CHEMISTRY GENERAL AND PHYSICAL CHEMISTRY

S

UNIT-I: Stereochemistry of Carbon Compounds

Short Questions:

- 1. Define chiral molecules and explain the criteria for chirality.
- 2. What are enantiomers and diastereomers? Give examples.
- 3. Explain the difference between Fischer, Newman, and Saw-Horse projections.
- 4. What is optical activity? How is it measured?
- 5. Define specific rotation and optical rotation.
- 6. What are the symmetry elements in chiral molecules?
- 7. Give examples of optical isomerism in glyceraldehyde, lactic acid, and alanine.

Long Questions:

- 1.Explain the concept of optical isomerism with suitable examples, such as glyceraldehyde and tartaric acid.
- 2.Discuss the different molecular representations (Wedge, Fischer, Newman, Saw-Horse) and their applications.
- 3.Derive the conditions for chirality in molecules and explain the significance of these conditions using examples.
- 4. Explain the phenomenon of optical rotation, its measurement, and how it applies to chiral compounds.

UNIT II: Bioinorganic Chemistry

Short Questions:

1. What are metal ions, and why are they important in biological systems?

- 2. Explain the Na/K pump and its significance in biology.
- 3.Describe the role of carbonic anhydrase in the body.
- 4. What is the toxicity of heavy metals like Hg, Pb, Cd, and As? Explain the reasons.
- 5. What is the significance of chelating agents in medicine?
- 6.Explain the structure and function of hemoglobin and myoglobin.

Long Questions:

- 1.Discuss the role of metal ions in biological systems, including their classification and importance.
- 2.Explain the toxicity of mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in biological systems and their effects on health.
- 3.Describe the functioning of hemoglobin and myoglobin in the transfer and storage of oxygen and iron.
- 4.Discuss the use of cisplatin as an anti-cancer drug, including its mechanism of action and clinical applications.

UNIT III: Ionic Equilibrium

Short Questions:

- 1.Define electrolytes and differentiate between strong, moderate, and weak electrolytes.
- 2. What factors affect the degree of ionization of weak acids and bases?
- 3. Define the ionization constant and ionic product of water.
- 4.Explain the concept of the pH scale.
- 5. What are buffer solutions? Explain the Henderson equation.
- 6. What is the common ion effect? Give an example.
- 7.Explain the solubility product principle and its applications.

Long Questions:

1.Discuss the factors that affect the degree of ionization and explain its significance in ionic equilibrium.

- 2.Derive and explain the Henderson-Hasselbalch equation for buffer solutions and discuss their practical applications.
- 3.Explain the common ion effect and its application in the solubility of salts.
- 4.Derive the expression for the ionization constant of weak acids and bases and discuss its applications in determining pH.

UNIT IV: Chemical Kinetics-I

Short Questions:

- 1. Define reaction rate and discuss the factors affecting reaction rates.
- 2. What is the order and molecularity of a reaction? Explain with examples.
- 3. Define the half-life of a reaction.
- 4. What is the integrated rate equation for zero-order reactions?
- 5.Explain the significance of molecularity in chemical reactions.

Long Questions:

- 1.Explain the concept of reaction rates and discuss the effect of temperature, pressure, and catalysts on reaction rates.
- 2.Derive the integrated rate equations for zero, first, and second-order reactions and discuss how to determine the order of a reaction experimentally.
- 3.Define half-life and explain its relationship with reaction order in detail.

UNIT V: Chemical Kinetics-II

Short Questions:

- 1. What is activation energy and how is it calculated from the Arrhenius equation?
- 2.Explain the Collision theory of chemical reactions.
- 3. What is the concept of the activated complex in the Activated Complex theory?
- 4.Describe the factors affecting enzyme catalysis.
- 5. What is the Lock and Key model in enzyme catalysis?

6.State and explain the Michaelis-Menten equation.

Long Questions:

- 1. Explain the theories of reaction rates: Collision theory and Activated Complex theory. Compare both theories qualitatively.
- 2.Derive the Michaelis-Menten equation and discuss its significance in enzyme catalysis.
- 3.Discuss enzyme catalysis, including the factors affecting it and the role of inhibitors in the catalytic process.